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Classical Limit(s) of Quantum Field Theories
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We discuss some of the issues involved in finding classical limits for quantum
fields. In particular we focus on the Hamiltonian classical field and the
hydrodynamic and thermodynamic limits.

1. INTRODUCTION

The aim of this paper, as can be seen from the title, is to give a general
presentation of the issues involved in the effort to understand the emergence

of classical behavior from quantum fields. The tentative plural in the word

ª classical limitº means to reflect our uncertainty in deciding in terms of

which variables this notion of limit is to be understood.

There has been an impressive range of activity in the last 10±15 years

on the issue of emergent classicality. The key ideas of decoherence, coarse-
graining, and noise have provided the basic conceptual tools for the study

of a large variety of systems, mainly in the ª everydayº nonrelativistic domain.

In simple models, programs of environment-induced decoherence [1, 2] and

consistent histories [3±7] have been succesfully implemented and manifoldly

increased our understanding of the classicalization process.
Still, it is not unfair to say that similar explorations in the territory of

relativistic quantum field theory have not been able to provide a concrete

cartography of the terrain. Here I give a (personal and by no means exhaustive)

summary of ideas, concepts, and ongoing programs in this direction.

The conceptual importance of understanding the classical limit cannot

be overstated. One of the main motivation in such an undertaking has been
its importance for cosmology. Somehow, the primordial quantum fluctuations

have to become classical and amplified during the inflation period if the
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seeds of structure formation are to appear. In a more general context, we would

need to know how the late-universe, classical hydrodynami c description arises

from the highly quantum behaviour of the early epoch.
But this issue is important even outside the cosmological context. It is

closely connected to the measurement problem of quantum fields, that is,

what are the observables that are actually measured in a field (amplitudes,

particles) and, perhaps more importantly, under what conditions does a quan-

tum state exhibit particlelike behavior. Finally, we should remark the impor-

tance of understanding the classical limit for formulating nonequilibrium
thermodynamic properties of quantum fields.

Three particular issues are addressed in this discussion.

1. General ideas on how the classical domain is identified, and the

particular problems encountered in the quantum field-theoretic context.

2. Phase space classicality, that is, how and under what conditions

Hamiltonian mechanics can be obtained as the limit of a quantum theory.
3. The development of a framework of ideas seeking to understand

classicality through the study of hydrodynamic or thermodynamic types of

coarse-graining.

2. WHAT IS INVOLVED IN CLASSICALIZATION?

By inverting the question in the title of this section, we could equally

well ask what is peculiar to the quantum theory, for these features are to be

suppressed when desiring a quasiclassical domain.

Decoherence. The foremost characteristic of the quantum world is coher-

ence: the appearance of superpositions as manifested in the two-slit experi-
ment. Decoherence then is to be defined as a return to classical statistics.

Quantum mechanics is not a classical probabilistic theory, especially

when time evolution is taken into account. This has been highlighted in the

histories approach to quantum mechanics: if a probability measure is to be

defined on sets of histories such that it satisfies the Kolmogorov probability

axioms a decoherence condition has to be imposed between pairs of such
histories.

Alternatively, this deviation from classical statistics can be seen in the

phase-space picture of quantum mechanics. For one can in various ways

define n-point (unequal time) functions in phase space given an initial state

and a Hamiltonian. But these fail to define a stochastic process (the failure

being again the Kolmogorov axioms in another guise). Hence, the first and
most important criterion for classicality is the transition from a quantum to

a classical stochastic process: it is more a matter of temporal statistics rather

than specific dynamics and it generically involves coarse-graining: focusing

on a less specific information than the quantum theory allows.
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Approximate Determinism. Classical mechanics is a deterministic theory,

and while determinism is probably too much to demand from an approximate

theory nowadays (after the advent of chaos), still it is important to clarify
when Newtoniam mechanics is obtained as a limit of the quantum theory. For

a more restricted context, then, after decoherence one demands approximate

determinism, i.e., the existence of a deterministic set of equations governing

to some extent the evolution of certain observables in our physical system.

As we said, decoherence necessitates coarse-graining, which has the

additional effect of introducing uncertainty, hence noise in our computations.
Hence classical behavior arises at the interface of two competing require-

ments: too little coarse-graining and one loses classical statistics, too much

and one loses predictability.

Locality. Since Einstein locality is a symmetry of the classical world

and is necessary in realistic field theories, one should demand its preservation
in the quasiclassical regime. The danger here lies in the EPR type of correla-

tions present in any quantum mechanical system. Indeed it has been estab-

lished that nonlocal quantum correlations are generic in quantum field

theories: in a given state and for each local observable there will always be

another one in a spacelike-separated region almost totally entangled with it.

This problem in some form or another had been recognized from the
birth of quantum field theory. It is necessary that we seek some mechanism

suppressing the EPR nonlocalities, at least when looking for a quasiclassical

domain. There is little work on this subject and we refer to it mainly as an

important point of unease.

3. MECHANISMS FOR CLASSICALITY

The next question is then: How does classicality come about? Given a

particular system, what is the constraint enforcing it to behave classically?

The answer is that classicality can be (predominantly) from causes either

extrinsic or intrinsic to the system.

Extrinsic Causes. This case essentially covers what is known in the

literature as the environment-induced superselection rules program. That is,

the stochastic action of an environment on the system can rapidly cause

decoherence. This is manifested by suppression of interferences in a basis

determined primarily from the system’ s coupling to the environment and the

consequent (approximate) diagonalization of the density matrix in that basis.
This implies classicalization for the statistic associated to a diagonal density

matrix (in the same basis at all times) are essentially classical.

The standard paradigm for this kind of classicalization is given by the

quantum Brownian motion models [9±13 ]. The classical limit obtained in
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this case corresponds to a particle undergoing classical (dissipative) evolution

under the action of a stochastic force, the strength of which depends on the

state of the environment [13, 7, 15, 16]. But we should stress that it is not

true that all environments are robust enough to produce decoherence [11,

14 ]: typically the energy carried by the environment should be quite large

(e.g., a thermal state) compared to the energy scales associated with a system.

For the field theory case see refs. 17 and 18.

In the field theory case a manifestation of this phenomenon could be a

tendency of an interacting field’ s density matrix to diagonalize in approximate

eigenstates of its interaction currents [19], as, for instance, might be the

case for the electron field in QED when the photonic vacuum is taken as

the environment.

However, particularly in a cosmological context, there seems to be a

conceptual problem into applying this line of ideas. It is difficult to conceive

of an objective split between system and environment in such a caseÐ the

universe is after all a closed system, and quantum coherence (defined in

terms of correlations and relative phases) is never truly lost. There is much

to be said for the idea that the ever-present gravitational field is the agent for

matter’ s decoherence [20], but what then is the agent of its own decoherence?

Intrinsic Causes. This case, which is much more difficult to analyze,

can best be stated in terms of a history language: due to particular dynamics

and for a large class of intitial states, some coarse-grained histories are

realized with probability very close to one. Hence the classicality in such a

case is more a result of an approximate determinism intrinsic in the configura-

tion of a physical system.

With regard to the question of what types of coarse-grained histories

exhibit this type of behavior, we give two main examples:

1. Phase space histories which when suitably coarse grained essentially

allow us to reproduce a classical mechanics quasiclassical domain.

2. Histories of hydrodynamics quantities like energy or particle density,

which are more suitable for systems with a large number of degrees of

freedom. They involve a much larger degree of coarse-graining, which in

principle would allow for decoherence even if the underlying phase-space

quantum evolution does not become classicalized.

A typical example would be the behavior of histories in a many-body

system corresponding to a quantity N( p, q), the number density in the single-

particle phase space. The study of such histories should under general condi-

tions enable us to derive a correlation according to some form of Boltzmann

equation, which again would be the basis of a hydrodynamic description

(derivation of a Navier±Stokes type of equation).
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This is a highly difficult problem, essentially deriving Boltzmann’ s

equation from the SchroÈ dinger one. But this type of coarse-graining seems

very natural in a field-theoretic context, for hydrodynamic variables being
of a bulk type seem to respect more the spacetime character of a quantum field.

The separation between intrinsic and extrinsic type of classicality is

essentially artificial; it corresponds to the question, ª What is the correct

coarse-graining from which to proceed in the derivation of the classical

limit?º 2 We believe that for quantum fields, themselves not being localized

objects, the notion of coarse-graining with respect to a separation of system
and environment is rather artificial and cannot be viewed as corresponding

to a generic situation. Therefore, in the rest of the paper we shall concentrate

on the ideas and techniques current in the study of intrinsic types of emer-

gent classicality.

4. PHASE-SPACE COARSE-GRAINING

The phase-space structure is encoded into the quantum theory by virtue

of the canonical commutation relations

[QÃ, PÃ] 5 i " (4.1)

A concrete realization of these operators enables the definition of are presenta-

tion of the canonical groups with elements

UÃ(q, p) 5 exp(ipQÃ1 iqPÃ) (4.2)

through which one can construct the coherent states

) qp & 5 UÃ(q, p) ) 0& (4.3)

conveniently taking ) 0& as a minimum-uncertainty state (or sometimes the

lowest-lying state of the Hamiltonian). They define a map of the classical

phase space of the system into the Hilbert space of the quantum theory. In
this classical space, a metric is naturally defined as ª a classical shadow of

quantum geometryº

ds2 5 ^ qp ) d 2 ) qp & 2 ) ^ qp ) s ) qp & ) 2 (4.4)

This is important: it provides a length scale with respect to which one can

precisely define degrees of phase-space coarse-grainings. Taking this into

account, there are two complementary ways to proceed in the study of phase-
space classicality.

2 This is not a new question. It was noted early that in QFT the limits c ® ` and " ® 0 do
not commute; rather, the result depends on the states upon which this limit is taken. Hence
the limit could either be a particle system or a classical field.
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We can proceed focusing on the evolution of the state and examine the

way it remains concentrated on a phase region. Mathematically this is best

achieved throught the use of a quasiprojector: a positive-operator-valued
measure on phase space. Given a sufficiently large and regular3 phase-space

cell C, one can construct an approximate projection operator PC such that

its range consists of states well localized within C. A convenient construction

is through the coherent states as

PÃC 5 # dq dp

2 p "
) qp & ^ qp ) (4.5)

Hence determination of classicality can be viewed as establishing whether a

quantum states during its time evolution remains an approximate eigenstate

of phase-space projectors on cells that are correlated according to the classical
equations of motion.

The above context is a bit restrictive in the sense that only quasidetermi-

nistic phase-space classicality can easily be discerned. For the more general

case it is good to return to the ideas briefly discussed in Section 2. One can

generally define operators D ( j ) that correspond to ª projectionsº onto phase-
space points j 5 (q, p). There are several way to define these, but the most

convenient would be to take either the Fourier transform of the operator (4.2)

to get contact with the Wigner representation, or a projector to a coherent

state projector to be more in line with the consistent hisotries approach.

Then one can define the Heisenberg-picture operators (or the correspond-

ing entities in an open systems)

D ( j , t) 5 eiHt D ( j )e 2 iHt (4.6)

and from these the unequal-time phase-space n-point functions as [21]

pn( j 1, t1; j 2, t2 . . . ; j n, tn) 5 Tr( r 0 D ( j 1, t1) . . . D ( j n, tn)) (4.7)

The hierarchy formed by the set of all these functions (or, more conveniently,

their real-valued symmetrized versions) does not satisfy the Kolmogorov
axioms defining a stochastic process. But it is possible that when acting with

a smearing operation on scales larger than a characteristic length of the

metric, one can have an approximate satisfaction of these conditions. Hence,

according to this idea of coarse-graining, it is meaningful to ask when this

quantum process is close to a stochastic one.

A criterion can be given through the use of information measures [23].
A most convenient is the difference I 2 S between the Shannon ±Wehrl (SW)

3 That is, having a boundary sufficiently smooth so that its curvature is much larger than the
characteristic length scale of the metric.
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entropy [22 ] and the von Neumann entropy of the time-evolved state. The SW

entropy is defined as the Shannon information of the probability distribution

p r (q, p) 5 ^ qp ) r ) wp & (4.8)

that is, as

I [r ] 5 2 # dq dp

2 p "
p r (q, p) log p r (q, p) (4.9)

The SW entropy satisfies two important inequalities

I [r ] $ 1 (4.1 0)

I [r ] $ S (4.11)

A state r can then be said to exhibit phase-space classicality if I 2 S remains
of the order of unity during time evolution. The argument for this runs as

follows: The Shannon information for a state with respect to some basis is

equal to the von Neumann entropy if the density matrix is diagonal on this

particular basis. Now, the coherent states form an overcomplete basis on the

Hilbert space of the system. A complete orthonormal basis can be constructed

from a subset of coherent states by taking a lattice on phase space with
separation less than a critical value [24 ]. Continuity arguments suffice to

show that the Shannon information with respect to the phase-space lattice

basis is equal to the SW etropy up to terms of order less than unity. Hence

a small value of I-S at all times is a guarantee that the state remains approxi-

mately diagonal in a phase-space basis during time evolution, itself implying
approximately classical statistics.

An interesting example is the case where the dynamics forces the evolu-

tion of a Gaussian state into highly squeezed state ) r(t), f (t) ^ as, for example,

in the case of a classically chaotic system in the Gaussian approximation.

Then S 5 0 and

I [r ] 5 1 1 log cosh r(t) (4.12)

implying an eventual breakdown of classicality.

Both of the above criteria can be readily translated into field theory

language. The information criterion seems more suitable: coherent states can

be defined even in systems with infinite number of degrees of freedom, even

though in interacting theories they are generically not Gaussians. An important
case is that of a scalar field evolving in a de Sitter spacetime, within the

context of inflationary models. The SW entropy then increases aymptotically

as I [r ] . Ht, pointing to the nonexistence of phase-space classicality. Since

in general in cosmological spacetimes the driving term of the changing scale
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factor tends generically to cause squeezing, phase-space classicality can arise

only throught the conideration of interaction terms.

There are also two important remarks one should make on this point:
1. Decoherence is generically a nonperturbative phenomenon, meaning

that it cannot be decided by consideration of perturbations around a quadratic

potential. This can be shown by an analysis of the Gaussian approximation

for either open or closed systems [5, 16 ]. At least the knowledge of the

nonperturbat ive classical solutions is necessary if we are to decide whether

indeed classicality is to emerge. The reason for this is that the relevant object
in decoherence considerations is the evolution operator e 2 iHt (rather than the

S matrix when considering scattering processes) and it is well known that

its perturbative evaluation breaks down at relatively early times

2. Phase-space classicality is a minimal coarse graining that gives robust
classicality. For instance, configuration-space histories when decohering pro-

vide in general a good indication of phase-space classicality; this is not true
when time evolution involves extreme squeezing: even small perturbations

are sufficient then to destroy any notion of classicality in configuration space.

If one, for instance, considers unequal-time n-point functions in configuration

space, they always give rise to a stochastic process [25, 26 ]. The full quantum

mechanical features arise only when considering a sample space of quantum
mechanically noncommuting observables.

5. HYDRODYNAMIC COARSE-GRAININGS

Systems like the classically chaotic ones are not expected to exhibit

classical behavior at the phase-space level (unless they are coupled to a
decohering environment). Some many-body systems fall within this category.

But even when they do, it is generally more profitable to consider histories

of much more coarse-grained quantites that have a physical significance.

These are for convenience labeled as hydrodynami c variables [6, 27±29 ],

for it is these variables classicalized that one would like to recover in order

to have an effective description of such systems.
If in the environment-induced decoherence the Brownian motion has

served as a typical example for the system±environment split, in this case

the other fundamental paradigm in nonequilibrium statistical mechanics is

expected to play an important role: the Boltzmann type of coarse-graining

involving essentially treating the higher order correlations of the system as

unnecessary to an effective description and considering them as a source of
noise able to cause decoherence to our preferred quantities, typically densities

(particle, energy, charge, etc).

There are two important ways to tackle the problem and these are briefly

described in what follows.
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5.1. Approximate Conservation 5 Approximate Decoherence

Hydrodynamic variables are usually of the density type. Energy and

momentum densities are elements of the stress-energy tensor and as such they
are quite important when one wants to study, for instance, the backreaction of

quantum fields onto the classical Einstein equation. Hence it is very important

to be able to identify quasiclassical equations of motion for these observables.

There exists a heuristic argument [27] for why these objects when

smeared in a volume of order V are expected to decohere. Consider any
density r corresponding to a conserved quantity. By virtue of the continuity

equation we should have

-
- t # V

d 3x r 5 2 # V

d 3x ¹ J 5 2 # - V

d 2x J (5.1)

In a sufficiently large volume of order L3 the rate of change of the smeared

densities will scale as L2 rather then L3 as with smeared densities correspond-

ing to nonconserved currents. Given the fact that exactly conserved quantities
decohere, it is reasonable to assume from continuity arguments that the same

will be true approximately for approximately conserved ones.

The above argument is very general and a more careful treatment ought

to put restrictions on the initial state of the field. An interesting result in this

direction is the fact that decoherence follows automatically when the initial
state is one of local equilibrium [29 ]. But such states are mixed, while in a

closed system we shall generically have to work with open states. One could

then say that whenever the state of a system is operationally close to one of

local equilibrium,4 decoherence of the corresponding hydrodynamic variables

is to follow.

Still, it is more of interest to know when the approach to local equilibrium
even in an operational sense is a generic feature of quantum mechanical

many-body systems or if it itself necessitates a sufficiently local initial state.

In general, could we expect a superposition of two localized states to evolve

toward a local equilibrium one? Perhaps the ignored degrees of freedom

taken as an environment might be able to produce decoherence, as is the

argument in the context of a simple model in ref. 30.

5.2. Correlation Histories

Let us recall the type of coarse-graining employed in the classical deriva-

tion of the Boltzmann equation. In an N-particle system the phase space is

R6 N and what we are interested in is an effective equation for a distribution

4 This is to be taken as meaning to have the same expectation values when evaluating the
relevant Heisenberg-pictur e projector on it.
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function on a one-particle phase space R6. In the process of coarse-graining

one is essentially ignoring all correlation functions of degree higher than one.

More generally in many-body systems the classical description by the
Liouville equation is equivalent to the BBKGY hierarchy giving a set of

equations describing the evolution of the n-point functions of the system.

The standard practice is to truncate the hierarchy at some level (say at 2-

point functions) and consider higher order correlation functions as being

ª slavedº to the lower order ones. This choice of coarse-graining gives natur-

ally dissipation and noise, but is of a completely different type from the ones
used in Brownian motion: the splitting of system and environment is subtle

and not associated with separating different degrees of freedom.

In the case of field theory instead of the BBKGY we have the Schwinger±

Dyson hierarchy of the n-point functions. In that case trunction at the n 5
1 level corresponds essentially to mean-field theory (mean field is what can

be measured by a local observer), while at the n 5 2 level it is essentially
the Gaussian approximation. Ways of effecting this truncation have been

developed using either functional methods in the closed time path (CTP)

formalism [31] or in a canonical framework [32 ] (see also ref. 33).

There are two points one should stress concerning this approach. First,

it is in some sense complementary to the search for decoherence of hydrody-
namic variables explained earlier. Recall that the Boltzmann equation for a

nonrelativistic many-body system contains sufficient information to allow

for a derivation of the Navier±Stokes hydrodynami c equation. Of course, the

important point is the identification of the conditions under which some kind

of classical field-theoretic transport equation does emerge as a meaningful

approximation from quantum field theory. Some of the results obtained sug-
gest that classical behavior at this level is possible only for a restricted class

of states: for instance, the ones close to the vacuum.

The other important point is that the two-point functions contain suffi-

cient information to capture the behavior of really hydrodynamic quantities

such as the energy-momentum tensor (at least its dominant part in a perturba-

tive calculation). Hence focusing on the classicalization of lower point func-
tion correlation histories might provide an alternative approach toward

obtaining classical hydrodynamic equations.
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